Mappings with Integrable Dilatation in Higher Dimensions

نویسندگان

  • JUAN J. MANFREDI
  • E. VILLAMOR
چکیده

Let F ∈ W 1 , n loc (Ω ; R ) be a mapping with nonnegative Jacobian JF (x) = detDF (x) ≥ 0 for a.e. x in a domain Ω ⊂ R n . The dilatation of F is defined (almost everywhere in Ω) by the formula K(x) = |DF (x)| JF (x) · Iwaniec and Šverák [IS] have conjectured that if p ≥ n − 1 and K ∈ Lploc(Ω) then F must be continuous, discrete and open. Moreover, they have confirmed this conjecture in the two-dimensional case n = 2 . In this article, we verify it in the higher-dimensional case n ≥ 2 whenever p > n − 1 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed point theorem for mappings satisfying contractive condition of integral type on intuitionistic fuzzy metric space

In this paper, we shall establish some fixed point theorems for mappings with the contractive  condition of integrable type on complete intuitionistic fuzzy metric spaces $(X, M,N,*,lozenge)$. We also use Lebesgue-integrable mapping to obtain new results. Akram, Zafar, and Siddiqui introduced the notion of $A$-contraction mapping on metric space. In this paper by using the main idea of the work...

متن کامل

Towards Baxter equation in supersymmetric Yang-Mills theories

We perform an explicit two-loop calculation of the dilatation operator acting on single trace Wilson operators built from holomorphic scalar fields and an arbitrary number of covariant derivatives in N = 2 and N = 4 supersymmetric Yang-Mills theories. We demonstrate that its eigenspectrum exhibits double degeneracy of opposite parity eigenstates which suggests that the two-loop dilatation opera...

متن کامل

Integrable mappings derived from the ∆∆RsG equation

In this paper we consider the integrability of the mappings derived from the double discrete related sine-Gordon (∆∆RsG) equation, which we recently introduced in the paper Higher dimensional integrable mappings, under an appropriate periodicity condition.

متن کامل

Higher - Loop Integrability in N = 4 Gauge Theory

The dilatation operator measures scaling dimensions of local operator in a conformal field theory. Algebraic methods of constructing the dilatation operator in four-dimensional N = 4 gauge theory are reviewed. These led to the discovery of novel integrable spin chain models in the planar limit. Making use of Bethe ansätze a superficial discrepancy in the AdS/CFT correspondence was found, we dis...

متن کامل

Quantum Strings and Bethe Equations

Recently there has been a lot of effort to shed more light on the AdS/CFT duality conjecture by using the idea of exact integrability. On the gauge theory side this includes elucidation of integrable properties of the dilatation operator of the planar N = 4 SYM at the leading [1, 2] and higher orders [3] of perturbation theory (see also [4] for earlier account of integrable structures in QCD). ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008